3x^2-2(5+3)=21+2(11)/(3-1)

Simple and best practice solution for 3x^2-2(5+3)=21+2(11)/(3-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-2(5+3)=21+2(11)/(3-1) equation:



3x^2-2(5+3)=21+2(11)/(3-1)
We move all terms to the left:
3x^2-2(5+3)-(21+2(11)/(3-1))=0
We add all the numbers together, and all the variables
3x^2-28-(21+211/2)=0
We get rid of parentheses
3x^2-28-21-211/2=0
We multiply all the terms by the denominator
3x^2*2-211-28*2-21*2=0
We add all the numbers together, and all the variables
3x^2*2-309=0
Wy multiply elements
6x^2-309=0
a = 6; b = 0; c = -309;
Δ = b2-4ac
Δ = 02-4·6·(-309)
Δ = 7416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7416}=\sqrt{36*206}=\sqrt{36}*\sqrt{206}=6\sqrt{206}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{206}}{2*6}=\frac{0-6\sqrt{206}}{12} =-\frac{6\sqrt{206}}{12} =-\frac{\sqrt{206}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{206}}{2*6}=\frac{0+6\sqrt{206}}{12} =\frac{6\sqrt{206}}{12} =\frac{\sqrt{206}}{2} $

See similar equations:

| (y-4)(y-4)=0 | | 17^x=15 | | 2.X-1=x+2 | | 11x-4x=4x-4x-1 | | 3x+45=48 | | -4u+42=-9(u-8) | | X-6x+9=36 | | -4(x+8)=-8x-44 | | 1/7(x+1)=2 | | X2=2x-3=0 | | -9y+9=6y-6 | | -6y+8=4(y-8) | | 3x-10÷4-7=1 | | 6(5-x)+30=25 | | 3n+2n=5n | | 5(x-7)-2(x-5)=5x | | 5(27-4)=2(5y-10) | | -3-(4-6x)=x | | -9y-3y=6 | | 12x-9+3x-5=11x-2+3x | | 2/3x=52 | | 6x/(x^2+2)^2=0 | | 1.7−0.3m=2+1.7m | | 14−y=19−11y | | 3=x3+4 | | 7y+11y=36 | | 0.5a+11=4−3a | | 12(x+2)=8(5) | | 20n-20n+n-1=6 | | 9(6)+3y=27 | | 17g+-20g=-12 | | 9t-8t+3t=20 |

Equations solver categories